唐景春

发布者:envadmin发布时间:2019-06-12浏览次数:13538

姓名:唐景春

职称职务:教授,博士生导师;天津市城市环境污染诊断与修复工程技术中心主任

研究领域:生态修复;生物炭及纳米材料;环境微生物技术与毒理

联系电话:13682055616

邮箱:tangjch@nankai.edu.cn

教育背景

1986.09-1990.07 南开大学环境科学系 环境生物学专业,获理学学士
1990.10-1992.02 天津市静海县环境保护局工作
1992.09-1995.03 天津轻工业学院(现天津科技大学)食品工程系,获工学硕士
1995.04-2001.10 天津市环境监测中心土壤生态室副主任
2000.01-2001.12 日本名古屋市东海技术中心环境监测技术研修交流
2001.10-2004.09 日本名古屋大学 工学部土木工学专攻,工学博士

科研教学经历

2004.10-2007.04  日本名古屋大学 EcoTopia 科学研究机构产学官连携研究员,日本神户大学内海域环境教育研究中心研究员
2005.4-至今  16877太阳集团副教授,教授,博士生导师
2008-2015  环境污染过程与基准教育部重点实验室副主任
2013.6-2013.12  加拿大萨省大学毒理中心 留学基金委公派访问学者
2015-至今  天津市城市环境污染诊断与修复工程技术中心主任

学术与社会任职

Bulletin of Environmental Contamination and Toxicology 编委

中国自然资源学会资源循环利用专业委员会 委员

科研项目

1.  国家自然科学基金项目-山东省联合基金重点项目,U1806216,“黄河三角洲土壤污染生态修复机制研究”,2019/01-2022/12333.76万元,在研,主持人。

2.  国家自然科学基金面上项目,41877372,新型稳定化生物炭-纳米铁复合材料的制备及其地球环境行为研究, 2019/01-2022/1262万元,在研,主持人。

3.  科技部重点研发项目,2018YFC1802002,复合有机污染土壤的高效氧化还原技术,2019/01-2022/1265万元,在研,子课题负责人。

4.  天津市科技局,17PTGCCX00240,天津市污染土壤调查与新型修复材料公共服务平台,2017/10-2019/09100万元,已结题,主持人。

5.  国家自然科学基金面上项目,41473070,土壤中典型石油烃降解基因的地理分异性及环境响应机制, 2015/01-2018/1290万元,已结题,主持人。

6.  国家水专项子课题独流减河上游示范区二级河道污染与风险控制研究2015ZX07203-011-06, 2015/01-2018/6, 134万元,已结题,主持人。

7.  中国大港油田受石油烃污染沉积物/土壤的生物修复,滨海新区科委,2016.6-2017.1260万元,已结题,主持人

8.  国家自然科学基金面上项目31270544, 生物炭强化石油烃污染土壤生态修复及机理研究,2013/01-2016/1279万元,已结题,主持人。

9.  国家863重大项目,2013AA06A205,滨海湿地区石油采场及周边污染土壤修复技术研究与示范,2013/01-2016/12720万元,第一参加人,已结题,参加。

10.教育部博士点基金项目(博导类),20120031110015,石油烃降解基因在土壤中的分布及其在生态修复中的作用研究,2013/011-2016/12,12万元,已结题,主持人。

11.天津市科技支撑重点项目,11ZCGYSF01400,大港油田区石油污染盐碱土壤生态恢复技术与示范,2011/04-2014/03,10030万元,已结题,主持人。

12.天津市应用基础及前沿技术研究计划,09JCYBJC08800,堆肥技术进行石油高效降解微生物菌剂的开发及过程调控,2009/04-2012/03,已结题,主持人。

13.863重点项目,2007AA061201,“微生物-植物联合原位生态修复技术处理中低浓度石油污染土壤, 2007/12-2010/12372万元,已结题,参加。

14.水体污染控制与治理国家科技重大专项,2008ZX07314-001-05,化学工业区污水种类及水量水质特征研究,2008-2010,已结题,子课题负责人。

15.天津市科技创新专项资金项目,08FDZDSF03400,大沽排污河底泥安全处置与河道生态修复技术集成及应用,2008-2010,已结题,子课题技术负责人。

16. “土壤污染诊断与修复技术研发及示范(kzcx1-yw-06-03)”,中国科学院知识创新工程重大项目,已结题,子课题负责人2008-2011.

17.“土壤-堆肥系统多环芳烃的微生物生态效应及机制”教育部留学回国人员科研启动基金项目,已结题,主持人 2008-.

18.Studies on Extracting Resources from Bio-wastes by the Refinery Technology,日本文部省项目,已结题,2006-2009.

19.“封闭型海域环境修复技术研究”,神户大学科研项目 已结题,2005-2007.

学术论著

论文(标注*为通讯作者)

 

2020年发表论文

[1] Li, Song; Tang, Jingchun*; Liu, Qinglong; Liu, Xiaome; Gao, Bin. A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol. ENVIRONMENT INTERNATIONAL 2020138: UNSP 105639.

[2] Huang, Hua; Niu, Zhirui; Shi, Ruru; Tang, Jingchun*; Lv, Lei; Wang, Jian; Fan, Yimo. Thermal oxidation activation of hydrochar for tetracycline adsorption: the role of oxygen concentration and temperature. BIORESOURCE TECHNOLOGY, 2020, 306: 123096

[3] Kumar, Manish; Xiong, Xinni; Wan, Zhonghao; Sun, Yuqing; Tsang, Daniel C W; Gupta, Juhi; Gao, Bin; Cao, Xinde; Tang, Jingchun; Ok, Yong Sik. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology, 2020:123613, DOI:10.1016/j.biortech.2020.123613

[4] Xiao, Yao; Lyu, Honghong*; Tang, Jingchun*; Wang, Kun; Sun, Hongwen. Effects of ball milling on the photochemistry of biochar: Enrofloxacin degradation and possible mechanisms. CHEMICAL ENGINEERING JOURNAL 2020, 384: 123311.

[5] Lyu, Honghong; Xia, Siyu; Tang, Jingchun*; Zhang, Yaru; Gao, Bin; Shen, Boxiong*. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg. Journal of Hazardous Materials, 2020, 384: 121357.

[6] Wang, Kun; Liu, Xiaomei; Tang, Jingchun*; Wang, Lan; Sun, Hongwen. Ball milled Fe0@FeS hybrids coupled with peroxydisulfate for Cr(VI) and phenol removal: Novel surface reduction and activation mechanisms. The Science of the Total Environment, 2020, 739:139748.

[7] Liu, Xiaomei; Tang, Jingchun*; Wang, Lan; Liu, Rutao. Synergistic toxic effects of ball-milled biochar and copper oxide nanoparticles on Streptomyces coelicolor M145. SCIENCE OF THE TOTAL ENVIRONMENT 2020, 720: 137582

[8] Ren, Xinwei; Tang, Jingchun*; Liu, Xiaomei; Liu, Xiaomei; Liu, Qinglong. Effects of microplastics on greenhouse gas emissions and the microbial community in fertilized soil. ENVIRONMENTAL POLLUTION 2020, 256: 113347.

[9] Lian, Jiapan; Wu, Jiani; Zeb, Aurang; Zheng, Shunan; Ma, Ting; Peng, Feihu; Tang, Jingchun; Liu, Weitao. Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L.). ENVIRONMENTAL POLLUTION, 2020, 263(A): 114498.

[10] Lyu, Honghong; Tang, Jingchun*; Cui, Mengke; Gao, Bin; Shen, Boxiong*. Biochar/iron (BC/Fe) composites for soil and groundwater remediation: Synthesis, applications, and mechanisms. CHEMOSPHERE 2020, 246: 125609

[11] Wang, Kun; Sun, Yuebing; Tang, Jingchun*; He, Juan; Sun, Hongwen. Aqueous Cr(VI) removal by a novel ball milled Fe-0-biochar composite: Role of biochar electron transfer capacity under high pyrolysis temperature. CHEMOSPHERE 2020, 241: UNSP 125044

[12] Lian, Jiapan; Zhao, Longfei; Wu, Jiani; Xiong, Hongxia; Bao, Yanyu; Zeb, Aurang; Tang, Jingchun; Liu, Weitao*. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere 2020, 239: UNSP 124794

 

2019年发表论文

[1] Liu, Xiaomei; Tang, Jingchun*; Song, Benru; Zhen, Meinan; Wang, Lan; Giesy, John P. Exposure to Al2O3 nanoparticles facilitates conjugative transfer of antibiotic resistance genes from Escherichia coli to Streptomyces. NANOTOXICOLOGY 2019, 13(10): 1422-1436

[2] Huang, Yao; Xia, Siyu; Lyu, Jingjing; Tang, Jingchun*. Highly efficient removal of aqueous Hg2+ and CH3Hg+ by selective modification of biochar with 3-mercaptopropyltrimethoxysilane. CHEMICAL ENGINEERING JOURNAL 2019, 360: 1646-1655

[3] Huang, Yao; Gong, Yanyan; Tang, Jingchun*; Xia, Siyu. Effective removal of inorganic mercury and methylmercury from aqueous solution using novel thiol-functionalized graphene oxide/Fe-Mn composite. JOURNAL OF HAZARDOUS MATERIALS 2019, 366: 130-139

[4] He, Juan; Xiao, Yao; Tang, Jingchun*; Chen, Hongkun; Sun, Hongwen. Persulfate activation with sawdust biochar in aqueous solution by enhanced electron donor-transfer effect. SCIENCE OF THE TOTAL ENVIRONMENT 2019, 690: 768-777

[5] Song, Benru; Tang, Jingchun*; Zhen, Meinan; Liu, Xiaomei. Effect of rhamnolipids on enhanced anaerobic degradation of petroleum hydrocarbons in nitrate and sulfate sediments. SCIENCE OF THE TOTAL ENVIRONMENT 2019, 678: 438-447

[6] Xu, Mengchen; Zhang, Tong; Lv, Chao; Niu, Qigui; Zong, Wansong; Tang, Jingchun; Liu, Rutao*. Perfluorodecanoic acid-induced oxidative stress and DNA damage investigated at the cellular and molecular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019, 185: 1-8

[7] Zhen, Meinan; Chen, Hongkun; Liu, Qinglong; Song, Benru; Wang, Yizhi; Tang, Jingchun*. Combination of rhamnolipid and biochar in assisting phytoremediation of petroleum hydrocarbon contaminated soil using Spartina anglica. JOURNAL OF ENVIRONMENTAL SCIENCES  2019, 85(SI): 107-118

[8] Liu, Xiaomei; Tang, Jingchun*; Wang, Lan; Liu, Rutao. Mechanism of CuO nano-particles on stimulating production of actinorhodin in Streptomyces coelicolor by transcriptional analysis. SCIENTIFIC REPORTS 2019, 9: 11253

[9] Liu, Xiaomei; Tang, Jingchun*; Wang, Lan; Liu, Qinglong; Liu, Rutao. A comparative analysis of ball-milled biochar, graphene oxide, and multi-walled carbon nanotubes with respect to toxicity induction in Streptomyces. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019, 243: 308-317

[10] Huang, Hua; Tang, Jingchun*; Niu, Zhirui; Giesy, John P. Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. CHEMOSPHERE 2019, 229: 418-425

[11] Song, Benru; Tang, Jingchun*; Zhen, Meinan; Liu, Xiaomei. Influence of graphene oxide and biochar on anaerobic degradation of petroleum hydrocarbons. JOURNAL OF BIOSCIENCE AND BIOENGINEERING 2019, 128(1): 72-79

[12] Liu, Qinglong; Tang, Jingchun*; Liu, Xiaomei; Song, Benru; Zhen, Meinan; Ashbolt, Nicholas J. Vertical response of microbial community and degrading genes to petroleum hydrocarbon contamination in saline alkaline soil. JOURNAL OF ENVIRONMENTAL SCIENCES 2019, 81: 80-92

[13] Liu, Xiaomei; Tang, Jingchun*; Wang, Lan; Giesy, John P. Al2O3 nanoparticles promote secretion of antibiotics in Streptomyces coelicolor by regulating gene expression through the nano effect. CHEMOSPHERE 2019, 226: 687-695

[14] Peng, Zhongya; Liu, Xiaomei*; Chen, Hongkun; Liu, Qinglong; Tang, Jingchun*. Characterization of ultraviolet-modified biochar from different feedstocks for enhanced removal of hexavalent chromium from water. WATER SCIENCE AND TECHNOLOGY 2019, 79(9): 1705-1716

[15] Lyu, Honghong; Yu, Zebin; Gao, Bin; He, Feng; Huang, Jun; Tang, Jingchun*; Shen, Boxiong. Ball-milled biochar for alternative carbon electrode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH 2019, 26(14): 14693-14702

[16] Xia, Siyu; Huang, Yao; Tang, Jingchun*; Wang, Lan. Preparation of various thiol-functionalized carbon-based materials for enhanced removal of mercury from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH 2019, 26(9SI): 8709-8720

[17] Zhang, Shuai; Lyu, Honghong; Tang, Jingchun*; Song, Benru; Zhen, Meinan; Liu, Xiaomei. A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water. CHEMOSPHERE 2019, 217: 686-694

[18] Song Ben-Ru; Zhen Mei-Nan; Liu Xiao-Mei; Tang Jingchun*. Real-time Fluorescence Quantitative Polymerase Chain Reaction for Anaerobic Degradation Genes masD and bamA in Petroleum Hydrocarbons. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019, 47(2): 207-213

[19] Shuai, Yiying; Zhou, Hanghai; Mu, Qinglin; Zhang, Dongdong; Zhang, Ning; Tang, Jingchun; Zhang, Chunfang. Characterization of a biosurfactant-producing Leclercia sp. B45 with new transcriptional patterns of alkB gene. ANNALS OF MICROBIOLOGY 2019, 69(2): 139-150

[20] Yu, Chen; Tang, Jingchun*; Liu, Xiaomei; Ren, Xinwei; Zhen, Meinan; Wang, Lan. Green Biosynthesis of Silver Nanoparticles Using Eriobotrya japonica (Thunb.) Leaf Extract for Reductive Catalysis. MATERIALS 2019, 12(1): 189

 

2018年及以前发表论文

[1] Lyu, Honghong; Tang, Jingchun*; Shen, Boxiong; Siddique, Tariq. Development of a novel chem-bio hybrid process using biochar supported nanoscale iron sulfide composite and Corynebacterium variabile HRJ4 for enhanced trichloroethylene dichlorination. WATER RESEARCH 2018, 147: 132-141

[2] Lyu H, Gao B, He F, Zimmerman A R, Ding C, Tang JC*, Crittenden J. Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chemical Engineering Journal 2018, 335, 110-119.

[3] Lyu HH, Tang JC*, Huang Y, Gai LS, Zeng EY, Liber K, Gong, YY. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chemical Engineering Journal 2017, 322, 516-524.

[4] Huang Y, Tang JC*, Gai LS, Gong YY, Guan HW, He RZ, Lyu H. Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal. Chemical Engineering Journal, 2017, 319, 229-239.

[5] Tang JC, Huang Y, Gong YY, Lyu HH, Wang QL, Ma JL. Preparation of a novel graphene oxide/Fe-Mn composite and its application for aqueous Hg(II). Journal of Hazardous Materials, 2016, 316: 151-158.

[6] Tang JC, Lv HH, Gong YY*, Huang Y. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresource Technology, 2015, 196: 355–363.

[7] He RZ, Peng ZY, Lyu HH*, Huang H, Nan Q, Tang JC*. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment, 2018, 612: 1177–1186.

[8] Lyu, HH, Gao B, He F, Zimmerman A R, Ding C, Huang H, Tang JC*. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution 2018, 233, 54-63.

[9] Liu Xiaomei, Tang Jingchun*, Wang Lan, Giesy, John P. Mechanisms of oxidative stress caused by CuO nanoparticles to membranes of the bacterium Streptomyces coelicolor M145. Ecotoxicology and Environmental Safety, 2018, 158: 123-130.

[10] Zhen, Meinan; Song, Benru; Liu, Xiaomei; Chandankere, Radhika; Tang, Jingchun*. Biochar-mediated regulation of greenhouse gas emission and toxicity reduction in bioremediation of organophosphorus pesticide-contaminated soils. CHINESE JOURNAL OF CHEMICAL ENGINEERING 2018, 26(12): 2592-2600

[11] Lyu HH, Zhao H, Tang JC*, Gong YY, Huang Y, Wu QH, Gao B. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Chemosphere 2018, 194, 360-369.

[12] Peng ZY, Zhao H, Lyu HH, Wang L, Huang H, Nan Q, Tang JC*. UV modification of biochar for enhanced hexavalent chromium removal from aqueous solutionEnvironmental Science and Pollution Research2018, 25(11SI): 10808-10819.

[13] Lyu HH, Gao B, He F, Ding C, Tang JC, Crittenden J. Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustainable Chemistry and Engineering, 2017, 5, (11), 9568-9585.

[14] Gurav R, Lyu HH, Ma JL, Tang JC*, Liu QL, Zhang HR. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environmental Science and Pollution Research, 2017, 24(12), 11392-11403.

[15] Huang H, Tang JC,* Gao K, He RZ, Zhao H and Werner D. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics, RSC Advances, 2017, 7: 14640–14648

[16] Liu Q., Tang J.*, Liu X., Song B., Zhen M. and Ashbolt N.J. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. Journal of Applied Microbiology, 2017, 123: 875—885.

[17] Liu QL, Tang JC*, Gao K, Gurav R, Giesy JP. Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Scientific Reports, 2017, 7: 14856.

[18] Gurav R, Tang JC, Jadhav J. Novel chitinase producer Bacillus pumilus RST25 isolated from the shellfish processing industry revealed antifungal potential against phyto-pathogens. International Biodeterioration & Biodegradation, 2017, 125: 228-234

[19] Gong YY, Gai LS, Tang JC*, Fu J, Wang QL, Zeng EY. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of the Total Environment, 2017, 595:  743-751.

[20] Lyu HH, He YH, Tang JC*, Hecker M, Liu QL, Jones PD, Codling G, Giesy JP. Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. Environmental Pollution, 2016, 218: 1-7.

[21] Gong YY, Wang L, Liu JC, Tang JC* and Zhao DY*. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. Science of the Total Environment 2016, 562: 191-200.

[22]Zhang HR, Tang JC*, Wang W, Liu JC, Gurav RG, Sun KJ. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. Journal of Environmental Sciences 2016, 47: 7-13.

[23] Liu JC, Wang L, Tang JC*, Ma JL. Photocatalytic degradation of commercially sourced naphthenic acids by TiO2-graphene composite nanomaterial. Chemosphere, 2016149328-335.

[24] Lu HX, Wei F, Tang JC*, Giesy JP. Leaching of metals from cement under simulated environmental conditions. Journal of Environmental Management, 2016, 169319-327.

[25] Gong YYTang JC, Zhao DY*. Application of iron sulfide particles for groundwater and soil remediation: A review. Water Research, 201689309-320.

[26] Honghong Lyu; Yanyan Gong; Jingchun Tang(*); Yao Huang; Qilin Wang. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide. Environmental Science and Pollution Research, 2016, 23: 14472~14488.

[27] Liu QL, Tang JC*, Bai ZH, Hecker M and Giesy JP. Distribution of petroleum degrading genes and factor analysis of petroleum contaminated soil from the Dagang Oilfield, China. Scientific reports, 2015, 5:11068 | DOI: 10.1038/srep11068.

[28] Sun KJ, Tang JC*, Gong YY & Zhang HR. Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Environmental Science and Pollution Research, 2015, 22(21): 16640-16651.

[29] Tang JC*, Lu XQ, Sun Q, Zhu WY. Aging effect of petroleum hydrocarbons in soil under different attenuation conditions. Agriculture, Ecosystems and Environment 2012, 149:109– 117. (IF=3.954)

[30] Jingchun Tang*, Qixing Zhou, Hongrui Chu, and Shinichi Nagata. Characterization of Alginase and Elicitor-Active Oligosaccharides from Gracilibacillus A7 in Alleviating Salt Stress for Brassica campestris L. Journal of Agricultural and Food Chemistry 201159(14): 7896–7901.

[31]J.C. Tang*, R.W. Wang, X.W. Niu, M. Wang, H.R. Chu, Q.X. Zhou.Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences2010, 7(12): 3961-3969.

[32] Jingchun Tang*, Rugang Wang, Xiaowei Niu, Qixing Zhou. Enhancement of soil petroleum remediation by using a combination of ryegrass (Lolium perenne) and different microorganisms. Soil & Tillage Research 2010, 110(1):87-93.(IF=4.675)

[33] Jingchun Tang*, Min Wang, Qixing Zhou, Shinishi Nagata. Improved composting of Undaria pinnatifida seaweed by inoculation with Halomonas and Gracilibacillus sp. isolated from marine environments. Bioresource Technology 2011, 102(3): 2925-2930

[34] Jing-Chun Tang, Nagamitsu Maie, Yutaka Tada, Arata Katayama. Characterization of the maturing process of cattle manure compost. Process Biochemistry 2006, 41(2): 380-389.

[35] Jing-Chun Tang, Tomonari Kanamori, Yasushi Inoue, Tsuyoshi Yasuta, Shigekata Yoshida and Arata Katayama. Changes in microbial community structure in thermophilic composting process of manure detected by quinone profile method. Process Biochemistry 2004, 39 (12): 1999-2006.

[36] Xinxin Wang, Zhen Han, Zhihui Bai, Jingchun Tang, Anzhou Ma, Guoqiang Zhuang*. Archaeal community structure along a gradient of petroleum contamination in saline-alkali soil. Journal of Environmental Sciences 2011, 23 (11): 1858-1864

[37] Jingchun Tang*, Min Wang, Fei Wang, Qing Sun, Qixing Zhou. Evaluation on the Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences 2011, 23(5): 845–851

[38] Jingchun Tang*, Wenying Zhu, Rai Kookana, and Arata Katayama. Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 2013, 116(6): 653-659.

[39] Jing-Chun Tang, Atsushi Shibata, Qixing Zhou and Arata Katayama. Effect of temperature on the reaction rate and microbial community in composting of cattle manure with rice straw. Journal of Bioscience and Bioengineering 2007, 104(4): 321-328.

[40] X. Qin, J.C. Tang*, D.S. Li and Q.M. Zhang. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Letters in Applied Microbiology 2012, 55, 210–217.

[41] J.C. Tang*, H. Taniguchi, H. Chu, Q. Zhou and S. Nagata. Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. Letters in applied microbiology 2009, 48: 38-43.

[42] Xin Wang, Jingchun Tang*, Jinxin Cui, Qinglong Liu, John P. Giesy, Markus Hecker. Synergy of Electricity Generation and Waste Disposal in Solid-State Microbial Fuel Cell (MFC) of Cow Manure Composting. International Journal of Electrochemical Science,20149(6)3144-3157.

[43] H.Y. Liang, Y.X. Yang, J.C. Tang*, M. Ge. Photocatalytic properties of Bi2O2CO3 nanosheets synthesized via a surfactant-assisted hydrothermal method. Materials Science in Semiconductor Processing. 2013, 16(6): 1650–1654.

[44] Xiao Juan Li, Jing Chun Tang*. Design and evaluation of portable shielding case for thyroid 131I monitoring by imaging plate. Journal of Radioanalytical and Nuclear Chemistry 2013, 295(2): 1177-1180.

[45] Jingchun Tang*, Xiaorui Bai, Wenju Zhang. Cadmium pollution and its transfer in agricultural systems in the suburbs of Tianjin, China. Soil & Sediment contamination 201120:722–732.

[46] Jing-Chun Tang, Qixing zhou, Arata Katayama. Effect of raw materials and bulking agent on the thermophilic composting process. Journal of microbiology and Biotechnology 2010, 20(5): 925-934.

[47] Jing-Chun Tang* and Arata Katayama. Relating quinone profile detection to aerobic biodegradation in thermophilic composting processes of cattle manure with different bulking agents. World journal of Microbiology & Biotechnology 2005, 21: 1249-1254.

[48] Jing-Chun Tang, Yasushi Inoue, Tsuyoshi Yasuta, Shigekata Yoshida and Arata Katayama. Chemical and microbial properties of various compost products. Soil Science and Plant Nutrition 2003, 49 (2): 273-280.

[49] Rugang Wang, Qinglong Liu and Jingchun Tang*. Degradation of Petroleum Hydrocarbons in Composting Process of Cattle Manure Under different Conditions. Journal of Pure and Applied Microbiology, 20137(3): 1979-1987

[50] Jing-Chun Tang,* Yutang Xiao, Akinobu Oshima, Hiroshi Kawai and Shinichi Nagata. Disposal of seaweed wakame (Undaria pinnatifida) in composting process by marine bacterium Halomonas sp. AW4. International Journal of Biotechnology 2008, 10(1): 73-85. (EI)

[51]Jingchun Tang*, Jianhe Wei, Kenji Maeda, Hiroshi Kawai, Qixing Zhou and Shinichi Nagata S. Degradation of seaweed wakame (Undaria pinnatifida) by composting process with inoculation of Bacillus sp. HR6. Biocontrol Science 2007, 12 (2): 47-54. EI

[52]Jingchun Tang*,Xiaowei Niu, Qing Sun, Rugang Wang. Bioremediation of Petroleum Polluted Soil by Combination of Ryegrass with Effective Microorganisms. Journal of Environmental Technology and Engineering, 2010, 3(2):80-86.

[53] Xiaorui Bai and Jingchun Tang*. Ecological Security Assessment of Tianjin by PSR Model.Procedia Environmental Sciences. 2010, 2: 881-887.

 

中文论文

  (略)

 

出版专著

[1] 主编. 《石油污染土壤生态修复技术与原理》. 科学出版社. 20143

[2] 主编 《生物质废弃物堆肥过程与调控》. 中国环境科学出版社 2010. 12

[3] Jingchun Tang, Hideji Tanniguchi, Qixing Zhou and Shinichi Nagata. Recycling of seaweed wakame through degradation by halotolerant bacteria. In: Seaweeds and their Role in Globally Changing Environments. Springer出版社, 2010.7

[4] 参编 《污染生态化学》,科学出版社,2011.6

 

获得专利

1.唐景春 吕宏虹 宫艳艳 黄华. 一种生物炭/石墨烯复合材料在吸附水中菲和Hg(Ⅱ)中的应用. ZL2015103585721, 授权日期:2019-06-28, 发明专利

2.唐景春 朱文英 刘庆龙 张海荣 张清敏. 小麦秸秆生物炭修复石油污染土壤的方法.ZL2013102836920. 授权日期:2019-02-22, 发明专利

3.庆龙唐景春 朱文英 克静张凯. 石油染土壤中降解基因AlkB含量定的方法。ZL2013105526714. 授权日期: 2017118, 发明专利

4.南琼 唐景春 彭中亚 黄华 黄耀. 一种快速高效同时检测土壤污泥中11中抗生素含量的方法.ZL2016108299148. 授权日期:2019-03-08, 发明专利

5.唐景春 黄华 刘君成 杨月明 王琳 万晓彤. 一种双模式有机污染土壤电动化学-微生物协同修复模拟装置. ZL2014203962916,授权日期:2015.03.11,实用新型专利

6.唐景春 董健 牛晓伟 王敏 王如 周启星. 黑麦草-高效微生物合修石油碱土壤的方法. 201111月 (ZL2010102294162, 发明专利

7.王鑫,周启星,蔡章,唐景春.一种土壤微生物燃料电池及修复石油烃污染土壤的方法。ZL2011103249120, 发明专利

8.张清敏;刘志军;李明;陈亚肖;刘少坤;魏惠;唐景春;喻嫦娥. 用于污泥堆肥的发酵剂的制备方法. 专利号:ZL2011100952542, 申请日期:2011.4.15, 发明专利

9.清敏,建超,刘文涛,唐景春, 威. 碱土壤及其制方法(ZL200910069074X, 发明专利

10.张清敏;刘志军;李明;陈亚肖;刘少坤;魏惠;唐景春;喻嫦娥. 用于污泥堆肥的发酵剂的制备方法. 专利号:ZL2011100952542, 申请日期:2011.4.15, 发明专利

荣誉与奖励

(1)亚洲青年生物技术科学家奖,Effect of temperature on the reaction rate and microbial community in composting of cattle manure with rice straw, 2012, 日本生物工学会

(2)天津市科学技术进步奖,多源热脱附与靶向化学法耦合修复重污染土壤技术创新及应用,省部级,二等(4/8)2019

(3)天津市科学技术进步奖,生物质固废资源化技术研发及应用,省部级,一等(7/12)2013

(4)天津市科学技术进步奖,城市污染河道原位修复技术集成及应用,省部级,二等(2/8),2014

(5)天津市科学技术进步奖,石油污染土壤革新修复技术与应用,省部级,二等(3/8),2013

(6)天津市专利奖,黑麦草-高效微生物联合修复石油污染盐碱土壤的方法,省部级,优秀奖,2016.10

(7)2018年度中国产学研合作创新奖 中国产学研合作促进会 获奖号:20183090

(8)JES优秀论文奖“A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar”,第二(通讯),2019

(9)产学研联合突出贡献奖(天津经信委),石油污染土壤革新修复技术与应用,天津市经信委,2012


Baidu
sogou